Moving Averages Phasenverschiebung ist die Differenz der Erkennung von Wendepunkten zwischen ursprünglichen und geglätteten Daten. Dieser Effekt ist ein Nachteil, da er eine Verzögerung beim Erfassen der Wendepunkte der Zeitreihen, insbesondere in der aktuellsten Periode, verursacht. Die symmetrischen, zentrierten Bewegungsdurchschnitte sind gegen diesen Effekt resistent. Am Ende (und am Anfang) der Zeitreihe können jedoch nicht symmetrische Zeitreihen verwendet werden. Um die geglätteten Werte in den beiden Enden der Zeitreihen zu berechnen, wird das asymmetrische Filter verwendet, jedoch verursachen sie den Phaseneffekt. Klicken Sie auf den Seriennamen, um sie zu verbergen / anzeigen zu lassen. Sie können den Mauszeiger über die Datenpunkte ziehen, um den tatsächlichen Wert zu sehen, der graphed ist Sind arithmetische Mittelwerte, die auf aufeinanderfolgende Zeitspannen mit fester Länge der Reihe angewendet werden. Wenn sie auf die ursprünglichen Zeitreihen angewandt werden, erzeugen sie eine Reihe von gemittelten Werten. Die allgemeine Formel für den gleitenden Durchschnitt M der Koeffizienten ist: Die gleitenden Durchschnittskoeffizienten werden Gewichte genannt. Die Größe p f 1 ist die gleitende mittlere Ordnung. Der gleitende Durchschnitt wird zentriert genannt, wenn die Anzahl der Beobachtungen in der Vergangenheit gleich der Zahlbeobachtung in der Zukunft ist (d. H. Wenn p gleich f ist). Gleitende Mittelwerte ersetzen die ursprünglichen Zeitreihen durch gewichtete Mittelwerte der aktuellen Werte, p Beobachtungen vor der aktuellen Beobachtung und f Beobachtungen nach der aktuellen Beobachtung. Sie werden verwendet, um die ursprünglichen Zeitreihen glatter zu machen. Die Tabelle gibt die Anzahl der Passagiere wieder, die 2001 von Finnland gemeldet wurden. Die gleichen Daten sind in der Tabelle aufgeführt: Arten der gleitenden Durchschnittswerte Auf der Grundlage der Gewichtungsmuster können die gleitenden Mittelwerte: Symmetrisch das für die Berechnung der gleitenden Mittelwerte verwendete Gewichtungsmuster sein Ist um den Zieldatenpunkt symmetrisch. Durch symmetrische Bewegungsdurchschnitte ist es nicht möglich, die geglätteten Werte für die ersten p - und letzten p-Beobachtungen (für symmetrische gleitende Mittelwerte pf) zu erhalten. Asymmetrisch ist das zur Berechnung von Bewegungsdurchschnitten verwendete Wägungsmuster nicht symmetrisch um den Zieldatenpunkt. Bewegungsdurchschnitte können auch nach ihrem Beitrag zum Endwert klassifiziert werden als: Einfache gleitende Mittelwerte, dh die gleitenden Mittelwerte, für die alle Gewichte gleich sind Einfache Bewegungsdurchschnitte alle Beobachtungen tragen gleichermaßen zum Endwert bei. Unnötig zu sagen, alle einfachen gleitenden Durchschnitte sind symmetrisch. Formal sind für den symmetrischen gleitenden Durchschnitt der Ordnung P 2p 1 alle Gewichte gleich 1 / P. Das Bild unten vergleicht den Glättungsgrad, der durch die Anwendung von 3- und 7-Term-einfachen gleitenden Durchschnitten erreicht wird. Die extremen Beobachtungen (z. B. April 2010 oder Juni 2011) haben einen geringeren Einfluss auf den längeren Durchschnitt als auf den kürzeren. Nicht einfache gleitende Mittelwerte, d. h. die gleitenden Mittelwerte, für die alle Gewichte nicht gleich sind. Die speziellen Fälle von nicht einfachen gleitenden Durchschnitten sind: zusammengesetzte gleitende Mittelwerte, die durch Komponieren eines einfachen gleitenden Mittelwerts der Ordnung P erhalten werden, deren Koeffizienten alle gleich 1 P und ein einfacher gleitender Durchschnitt der Ordnung Q sind, deren Koeffizienten alle gleich sind Zu 1 Q. Asymmetrische gleitende Mittelwerte. Eigenschaften der gleitenden Mittelwerte Die gleitenden Mittelwerte glatt machen die Zeitreihen. Wenn sie auf eine Zeitreihe angewendet werden, reduzieren sie die Amplitude der beobachteten Fluktuationen und wirken als Filter, der unregelmäßige Bewegungen von ihr entfernt. Die gleitenden Mittelwerte mit einem geeigneten Gewichtungsmuster können verwendet werden, um Zyklen einer bestimmten Länge in der Zeitreihe zu eliminieren. Im X-12-ARIMA saisonalen Anpassungsverfahren werden verschiedene Arten von gleitenden Durchschnittswerten verwendet, um die Tendenz - und saisonale Komponente abzuschätzen. Wenn die Summe der Koeffizienten gleich 1 ist, behält der gleitende Durchschnitt den Trend bei. Gleitende Mittelwerte haben zwei wichtige Vorgaben: Sie sind nicht robust und können von Ausreißern stark beeinträchtigt werden Die Glättung an den Enden der Serie kann nicht durchgeführt werden, sondern mit asymmetrischen gleitenden Durchschnitten, die Phasenverschiebungen und Verzögerungen bei der Erkennung von Wendepunkten einführen Spielen symmetrische gleitende Mittelwerte eine wichtige Rolle, da sie keine Phasenverschiebung in der geglätteten Reihe einführen. Aber, um zu vermeiden, Informationen an den Reihenenden zu verlieren, werden sie entweder durch ad hoc asymmetrische gleitende Durchschnitte ergänzt oder angewandt auf die Reihe, die durch Prognosen vervollständigt wird. Zeitreihenmethoden Zeitreihenmethoden sind statistische Techniken, die Gebrauch historischer Daten verwenden, die über einen Zeitraum von angesammelt werden Zeit. Zeitreihen-Methoden gehen davon aus, dass das, was in der Vergangenheit aufgetreten ist, auch in Zukunft vorkommt. Wie der Name der Zeitreihe andeutet, beziehen diese Methoden die Prognose nur auf einen Faktor - Zeitpunkt. Dazu gehören der gleitende Durchschnitt, die exponentielle Glättung und die lineare Trendlinie, und sie gehören zu den beliebtesten Methoden für die kurzfristige Prognose von Service - und Produktionsunternehmen. Diese Methoden gehen davon aus, dass sich identifizierbare historische Muster oder Trends für die Nachfrage im Laufe der Zeit wiederholen werden. Moving Average Eine Zeitreihenprognose kann so einfach sein wie die Nachfrage in der aktuellen Periode, um die Nachfrage in der nächsten Periode vorherzusagen. Dies wird manchmal als naive oder intuitive Prognose bezeichnet. 4 Wenn die Nachfrage zum Beispiel 100 Einheiten in dieser Woche beträgt, beträgt die Prognose für die nächste Wochen-Nachfrage 100 Einheiten, wenn die Nachfrage zu 90 Einheiten stattdessen ausfällt, dann sind die folgenden Wochen die Nachfrage 90 Einheiten und so weiter. Diese Art der Prognosemethode berücksichtigt nicht das historische Nachfrageverhalten, sondern nur die Nachfrage in der aktuellen Periode. Es reagiert direkt auf die normalen, zufälligen Bewegungen in der Nachfrage. Die einfache gleitende Durchschnittsmethode verwendet in der jüngsten Vergangenheit mehrere Bedarfswerte, um eine Prognose zu entwickeln. Dies neigt dazu, die zufälligen Zunahmen und Abnahmen einer Prognose, die nur eine Periode verwendet, zu dämpfen oder zu glätten. Die einfache gleitende Durchschnitt ist nützlich für die Prognose der Nachfrage, die stabil ist und zeigt keine ausgeprägte Nachfrage Verhalten, wie ein Trend-oder saisonale Muster. Bewegungsdurchschnitte werden für bestimmte Zeiträume berechnet, wie z. B. drei Monate oder fünf Monate, je nachdem, wie viel der Prognostiker wünscht, die Bedarfsdaten zu glätten. Je länger der gleitende Durchschnitt, desto glatter ist er. Die Formel für die Berechnung der einfachen gleitenden Durchschnitt ist Computing ein einfaches Moving Average Die Instant Paper Clip Office Supply Company verkauft und liefert Bürobedarf an Unternehmen, Schulen und Agenturen innerhalb eines 50-Meile Radius seines Lagers. Das Büro-Supply-Geschäft ist wettbewerbsfähig, und die Fähigkeit, Aufträge zeitnah zu liefern, ist ein Faktor, neue Kunden zu gewinnen und alte zu halten. (Büros in der Regel nicht, wenn sie auf niedrige Lieferungen laufen, aber wenn sie völlig ausgehen, so dass sie ihre Aufträge sofort benötigen.) Der Manager des Unternehmens will sicher sein, genug Fahrer und Fahrzeuge zur Verfügung stehen, um Aufträge umgehend zu liefern und Sie haben ausreichende Bestände auf Lager. Daher möchte der Manager in der Lage sein, die Anzahl der Aufträge, die während des nächsten Monats auftreten werden, zu prognostizieren (d. h. die Nachfrage nach Lieferungen vorauszusagen). Aus den Aufzeichnungen der Zustellungsaufträge hat das Management die folgenden Daten für die letzten 10 Monate akkumuliert, aus denen er 3- und 5-Monats-Bewegungsdurchschnitte berechnen möchte. Nehmen wir an, daß es Ende Oktober ist. Die Prognose, die sich aus dem 3- oder 5-monatigen gleitenden Durchschnitt ergibt, liegt typischerweise für den nächsten Monat in der Sequenz, die in diesem Fall November ist. Der gleitende Durchschnitt wird aus der Nachfrage nach Aufträgen für die vorangegangenen 3 Monate in der Sequenz gemäß folgender Formel berechnet: Der gleitende 5-Monatsdurchschnitt wird aus den vorherigen 5 Monaten der Bedarfsdaten wie folgt berechnet: Der 3- und der 5-Monats-Zeitraum Gleitende Durchschnittsprognosen für alle Monate der Nachfragedaten sind in der folgenden Tabelle dargestellt. Eigentlich würde nur die Prognose für November, die auf der letzten monatlichen Nachfrage basiert, vom Manager verwendet werden. Allerdings erlauben es die früheren Prognosen für die Vormonate, die Prognose mit der tatsächlichen Nachfrage zu vergleichen, um zu sehen, wie genau die Prognosemethode ist - das heißt, wie gut es funktioniert. Drei - und Fünfmonatsdurchschnitte Beide gleitenden Durchschnittsprognosen in der obigen Tabelle neigen dazu, die Variabilität, die in den tatsächlichen Daten auftritt, zu glätten. Dieser Glättungseffekt ist in der folgenden Abbildung zu sehen, in der die 3-Monats - und die 5-Monats-Durchschnittswerte einem Diagramm der ursprünglichen Daten überlagert wurden: Der gleitende 5-Monatsdurchschnitt in der vorherigen Abbildung glättet Schwankungen in einem größeren Ausmaß als Der dreimonatige Gleitende Durchschnitt. Der 3-Monats-Durchschnitt spiegelt jedoch die jüngsten Daten, die dem Büromaterial-Manager zur Verfügung stehen, stärker wider. Im Allgemeinen sind die Prognosen, die den längerfristigen gleitenden Durchschnitt verwenden, langsamer, um auf die jüngsten Veränderungen in der Nachfrage zu reagieren als diejenigen, die unter Verwendung kürzerer Periodenbewegungsdurchschnitte durchgeführt wurden. Die zusätzlichen Datenperioden dämpfen die Geschwindigkeit, mit der die Prognose antwortet. Die Festlegung der geeigneten Anzahl von Perioden, die in einer gleitenden Durchschnittsprognose verwendet werden müssen, erfordert oft ein gewisses Maß an Versuchs - und Fehlerversuchen. Der Nachteil der gleitenden Durchschnittsmethode ist, dass sie nicht auf Variationen reagiert, die aus einem Grund auftreten, wie z. B. Zyklen und saisonale Effekte. Faktoren, die Änderungen verursachen, werden in der Regel ignoriert. Es handelt sich grundsätzlich um eine mechanische Methode, die historische Daten konsistent widerspiegelt. Die gleitende Durchschnittsmethode hat jedoch den Vorteil, einfach zu bedienen, schnell und relativ kostengünstig zu sein. In der Regel kann diese Methode eine gute Prognose für die kurze Laufzeit, aber es sollte nicht zu weit in die Zukunft geschoben werden. Gewichteter gleitender Durchschnitt Die gleitende Durchschnittsmethode kann so angepasst werden, dass sie stärkere Fluktuationen in den Daten widerspiegelt. Bei der gewichteten gleitenden Durchschnittsmethode werden die Gewichte den letzten Daten entsprechend der folgenden Formel zugewiesen: Die Bedarfsdaten für PM Computer Services (gezeigt in der Tabelle für Beispiel 10.3) scheinen einem zunehmenden linearen Trend zu folgen. Das Unternehmen möchte eine lineare Trendlinie berechnen, um zu sehen, ob es genauer als die in den Beispielen 10.3 und 10.4 entwickelten exponentiellen Glättungs - und angepassten exponentiellen Glättungsvorhersagen ist. Die für die Berechnung der kleinsten Quadrate benötigten Werte sind wie folgt: Unter Verwendung dieser Werte werden die Parameter für die lineare Trendlinie wie folgt berechnet: Daher wird die lineare Trendliniengleichung berechnet, um eine Prognose für die Periode 13 zu berechnen, wobei x & sub3; Trendlinie: Die folgende Grafik zeigt die lineare Trendlinie im Vergleich zu den Istdaten. Die Trendlinie scheint die tatsächlichen Daten genau zu reflektieren - also gut zu passen - und wäre somit ein gutes Prognosemodell für dieses Problem. Ein Nachteil der linearen Trendlinie besteht jedoch darin, dass sie sich nicht an eine Trendänderung anpasst, da die exponentiellen Glättungsprognosemethoden voraussetzen, dass alle zukünftigen Prognosen einer Geraden folgen werden. Dies beschränkt die Verwendung dieser Methode auf einen kürzeren Zeitrahmen, in dem Sie relativ sicher sein können, dass sich der Trend nicht ändert. Saisonale Anpassungen Ein saisonales Muster ist eine repetitive Zunahme und Abnahme der Nachfrage. Viele Nachfrageartikel zeigen saisonales Verhalten. Bekleidungsverkäufe folgen jährlichen Jahreszeitmustern, mit der Nachfrage nach warmer Kleidung, die im Fall und im Winter und im Frühjahr und Sommer abnimmt, während die Nachfrage nach kühlerer Kleidung zunimmt. Die Nachfrage nach vielen Einzelteilen einschließlich Spielwaren, Sportausrüstung, Kleidung, elektronische Geräte, Schinken, Truthähne, Wein und Frucht, während der Ferienzeit erhöhen. Grußkarte Nachfrage steigt in Verbindung mit besonderen Tagen wie Valentinstag und Muttertag. Saisonale Muster können auch auf einer monatlichen, wöchentlichen oder sogar täglichen Basis auftreten. Einige Restaurants haben höhere Nachfrage am Abend als am Mittag oder am Wochenende im Gegensatz zu Wochentagen. Verkehr - also Verkäufe - an den Einkaufszentren nimmt Freitag und Samstag auf. Es gibt mehrere Methoden, um saisonale Muster in einer Zeitreihenprognose zu reflektieren. Wir beschreiben eine der einfacheren Methoden mit einem saisonalen Faktor. Ein saisonaler Faktor ist ein numerischer Wert, der mit der normalen Prognose multipliziert wird, um eine saisonbereinigte Prognose zu erhalten. Eine Methode zur Entwicklung einer Nachfrage nach saisonalen Faktoren besteht darin, die Nachfrage pro Saison nach der folgenden Formel aufzuteilen: Die daraus resultierenden saisonalen Faktoren zwischen 0 und 1,0 sind tatsächlich der Anteil der Gesamtjahresnachfrage jede Saison. Diese saisonalen Faktoren werden mit der jährlichen prognostizierten Nachfrage multipliziert, um prognostizierte Prognosen für jede Saison zu erzielen. Berechnung einer Prognose mit saisonalen Anpassungen Wishbone Farms wächst Truthähne zu einem Fleisch-Verarbeitung Unternehmen das ganze Jahr verkaufen. Allerdings ist seine Hauptsaison offensichtlich im vierten Quartal des Jahres, von Oktober bis Dezember. Wishbone Farms hat in den folgenden drei Jahren die Nachfrage nach Truthühnern erlebt: Weil wir drei Jahre Nachfragedaten haben, können wir die saisonalen Faktoren berechnen, indem wir die gesamte vierteljährliche Nachfrage für die drei Jahre durch die Gesamtnachfrage in allen drei Jahren dividieren : Als nächstes wollen wir die prognostizierte Nachfrage für das nächste Jahr, 2000, mit jedem der saisonalen Faktoren multiplizieren, um die prognostizierte Nachfrage für jedes Quartal zu erhalten. Um dies zu erreichen, benötigen wir eine Nachfrageprognose für 2000. Da in diesem Fall die Nachfragedaten in der Tabelle einen allgemein ansteigenden Trend aufweisen, berechnen wir eine lineare Trendlinie für die drei Jahre der Daten in der Tabelle, um eine grobe zu erhalten Prognose Schätzung: So ist die Prognose für das Jahr 2000 58,17 oder 58,170 Puten. Anhand dieser jährlichen Bedarfsprognose werden die saisonbereinigten Prognosen SF i für das Jahr 2000 verglichen, wenn diese vierteljährlichen Prognosen mit den tatsächlichen Bedarfswerten in der Tabelle verglichen werden. Sie scheinen relativ gute Prognoseschätzungen zu sein, die sowohl die saisonalen Schwankungen der Daten widerspiegeln als auch Der allgemeine Aufwärtstrend. 10-12. Wie ist die gleitende Durchschnittsmethode ähnlich der exponentiellen Glättung 10-13. Welche Auswirkung auf das exponentielle Glättungsmodell wird die Glättungskonstante erhöhen, haben 10-14. Wie sich die eingestellte exponentielle Glättung von der exponentiellen Glättung 10-15 unterscheidet. Was die Wahl der Glättungskonstante für den Trend in einem angepassten exponentiellen Glättungsmodell 10-16 bestimmt. In den Kapitelbeispielen für Zeitreihenmethoden wurde die Ausgangsprognose immer als die tatsächliche Nachfrage in der ersten Periode angenommen. Schlagen Sie weitere Möglichkeiten vor, dass die Startprognose tatsächlich ermittelt werden kann. 10-17. Wie unterscheidet sich das lineare Trendlinien-Prognosemodell von einem linearen Regressionsmodell für die Prognose 10-18. Von den in diesem Kapitel vorgestellten Zeitreihenmodellen, einschließlich dem gleitenden Mittelwert und dem gewichteten gleitenden Durchschnitt, der exponentiellen Glättung und der angepassten exponentiellen Glättung und der linearen Trendlinie, welche halten Sie für die besten Warum 10-19. Welche Vorteile hat eine angepasste exponentielle Glättung über eine lineare Trendlinie für die prognostizierte Nachfrage, die einen Trend aufweist 4 K. B. Kahn und J. T. Mentzer, Prognose in Consumer and Industrial Markets, The Journal of Business Forecasting 14, No. 2 (Sommer 1995): 21-28.Forecasting Saisonale und Trends durch exponentiell gewichtete gleitende Durchschnitte Charles C. Holt Graduate School of Business, Universität von Texas in Austin, Austin, TX, USA Verfügbar online 28. Januar 2004. Das Papier bietet eine systematische Entwicklung der Prognoseinformationen für exponentiell gewichtete gleitende Mittelwerte. Methoden für Reihen mit keinem Trend oder additivem oder multiplikativem Trend werden untersucht. Ebenso decken die Methoden nicht saisonale und saisonale Serien mit additiven oder multiplikativen Fehlerstrukturen ab. Das Papier ist eine Nachdruckversion des Berichts von 1957 an das Amt für Seeforschung (ONR 52) und wird hier veröffentlicht, um eine bessere Zugänglichkeit zu bieten. Exponentielle Glättung Vorhersage Lokale Jahreszeiten Lokale Trends Biographie: Charles C. HOLT ist Professor für Management Emeritus an der Graduate School of Business, Universität von Texas in Austin. Seine aktuelle Forschung ist über quantitative Entscheidungsmethoden, Entscheidungsunterstützungssysteme und Finanzprognosen. Zuvor hat er Forschung und Lehre an M. I.T. Carnegie Mellon University, die London School of Economics, die Universität von Wisconsin und das Urban Institute. Er ist seit 1947 in Computeranwendungen tätig und hat Forschungsarbeiten zur automatischen Steuerung, zur Simulation von Wirtschaftssystemen, zur Produktionsplanung, zur Beschäftigung und zur Lagerhaltung sowie zur Inflation und Arbeitslosigkeit durchgeführt. Copyright 2004 Veröffentlicht von Elsevier B. V. Zitieren von Artikeln ()
No comments:
Post a Comment